Minimum Bayes error features for visual recognition
نویسندگان
چکیده
منابع مشابه
Minimum Bayes error features for visual recognition
The design of optimal feature sets for visual classification problems is still one of the most challenging topics in the area of computer vision. In this work, we propose a new algorithm that computes optimal features, in the minimum Bayes error sense, for visual recognition tasks. The algorithm now proposed combines the fast convergence rate of feature selection (FS) procedures with the abilit...
متن کاملCanadian Robotic Vision Special Issue Minimum Bayes Error Features for Visual Recognition
The design of optimal feature sets for visual classification problems is still one of the most challenging topics in the area of computer vision. In this work, we propose a new algorithm that computes optimal features, in the minimum Bayes error sense, for visual recognition tasks. The algorithm now proposed combines the fast convergence rate of feature selection (FS) procedures with the abilit...
متن کاملMinimum Bayes Error Feature Selection for Continuous Speech Recognition
We consider the problem of designing a linear transformation , of rank , which projects the features of a classifier onto such as to achieve minimum Bayes error (or probability of misclassification). Two avenues will be explored: the first is to maximize the -average divergence between the class densities and the second is to minimize the union Bhattacharyya bound in the range of . While both a...
متن کاملMinimum Bayes error feature selection
We consider the problem of designing a linear transformation 2 IR , of rank p n, which projects the features of a classi er x 2 IR onto y = x 2 IR such as to achieve minimum Bayes error (or probability of misclassi cation). Two avenues will be explored: the rst is to maximize the -average divergence between the class densities and the second is to minimize the union Bhattacharyya bound in the r...
متن کاملPredictive minimum Bayes risk classification for robust speech recognition
This paper presents a new Bayes classification rule towards minimizing the predictive Bayes risk for robust speech recognition. Conventionally, the plug-in maximum a posteriori (MAP) classification is constructed by adopting nonparametric loss function and deterministic model parameters. Speech recognition performance is limited due to the environmental mismatch and the ill-posed model. Concern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Image and Vision Computing
سال: 2009
ISSN: 0262-8856
DOI: 10.1016/j.imavis.2006.06.008